
Student Name:

Student Number:

Total Marks:
100

Okanagan University College

Final Examination

Math 122 (Winter, 2003)

Instructor(s): Clint Lee

Section(s): 71 & 72

April 17, 2003

9:00AM

Duration: 3 hours

READ INSTRUCTIONS CAREFULLY BEFORE COMMENCING EXAM

INSTRUCTIONS: Answer all 13 questions in the spaces provided, showing all significant steps. Partial
marks will be awarded for correct work even if the final answer is incorrect. Marks per question are
given in the left margin, total 100. Check that your paper contains all 13 pages in addition to the
cover page. The last page of the examination is a formula sheet. You may detach this sheet and use
it in any of the problems on the exam.

This paper contains pages numbered 1 to 13

EXAM BOOKLETS ARE NOT REQUIRED



Math 122 (Winter, 2003)
Section(s) 71 & 72

Final Examination Page 1 of 13

1 Evaluate each integral. Give the exact numerical value of any definite integral.

(a)[3]

∫ (

1

x2
+

3

3x + 1
− e−x/2

)

dx

∫ (

1

x2
+

3

3x + 1
− e−x/2

)

dx =

∫ (

x−2 +
3

3x + 1
− e−x/2

)

dx

= − 1

x
+ ln |3x + 1| + 2e−x/2 + C

(b)[3]

∫ 2

1

t2

3
√

9 − t3
dt

Make the substitution u = 9 = t3 so that du = −3t2 dt or t2 dt = − 1
3 du. Further, t = 2 ⇒ u = 1

and t = 1 ⇒ u = 8. Then,

∫ 2

1

t2√
9 − t3

dt = −1

3

∫ 1

8

u−1/3 du =
1

3

3

2
u2/3

∣

∣

∣

∣

∣

8

1

=
3

2

(c)[3]

∫ π/4

0

w2 cos 2w dw

Use integration by parts with

u = w2 dv = cos 2w dw

du = 2w dw v =
1

2
sin 2w

Then

∫ π/4

0

w2 cos 2w dw =
1

2
w2 sin 2w

∣

∣

∣

∣

∣

π/4

0

−
∫ π/4

0

w sin 2w dw

=
π2

32
−
∫ π/4

0

w sin 2w dw

Integration by parts again with

u = w dv = sin 2w dw

du = dw v = −1

2
cos 2w

Then

∫ π/4

0

w2 cos 2w dw =
π2

32
−



−1

2
w sin 2w

∣

∣

∣

∣

∣

π/4

0

+
1

2

∫ π/4

0

cos 2w dw





=
π2

32
− 1

4
sin 2w

∣

∣

∣

∣

∣

π/4

0

=
π2

32
− 1

4

(d)[3]

∫

x2 + x − 1

(x + 2)(x − 3)
dx

Expand the denominator to give (x + 2)(x − 3) = x2 − x − 6. Then use polynomial long division to
write

x2 + x − 1

(x + 2)(x − 3)
= 1 +

2x + 5

(x + 2)(x − 3)

Then
∫

x2 + x − 1

(x + 2)(x − 3)
dx =

∫ (

1 +
2x + 5

(x + 2)(x − 3)

)

dx

= x +

∫ (

2x + 5

(x + 2)(x − 3)

)

dx

Next use partial fractions to write

2x + 5

(x + 2)(x − 3)
=

A

x + 2
+

B

x − 3

where A and B satisfy 2x + 5 = A(x − 3) + B(x + 2). Plugging in x = −2 and x = 3 gives A = − 1
5

and B = 11
5 . Thus,

∫

x2 + x − 1

(x + 2)(x − 3)
dx = x +

1

5

∫ (

− 1

x + 2
+

11

x − 3

)

dx = x − 1

5
ln |x + 2| + 11

5
ln |x − 3| + C
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2 During the first eight weeks after she is born a puppy
grows at a rate r(t), in kilograms per week, as shown
in the graph at the right. The puppy weighed 0.5 kg
when she was born.

0 2 4 6 8

0.5

1.0

1.5

2.0

t(wk)

r(kg/wk)

(a)[2] Set up a definite integral giving W (t), the puppy’s
weight t weeks after she was born.

W (t) − W (0) =

∫ t

0

r(z) dz

Since W (0) = 0.5, this gives

W (t) = 0.5 +

∫ t

0

r(z) dz

(b)[2] Determine the puppy’s weight

i) 2 weeks after she was born

The area represented by the integral here is a trapezoid, so

W (2) = 0.5 +

∫ 2

0

r(z) dz = 0.5 +

(

0.5 + 1.0

2

)

(2) = 2.0 kg

ii) 4 weeks after she was born

Taking the result from the previous part as a starting point, we have

W (4) = 2.0 +

∫ 4

2

r(z) dz = 2.0 +

(

1.0 + 2.0

2

)

(2) = 5.0 kg

iii) 6 weeks after she was born

W (6) = 5.0 +

∫ 6

4

r(z) dz = 5.0 +

(

2.0 + 1.5

2

)

(2) = 8.5 kg

iv) 8 weeks after she was born

W (8) = 8.5 +

∫ 8

6

r(z) dz = 8.5 +

(

1.5 + 0.5

2

)

(2) = 10.5 kg

(c)[2] Sketch a graph of W (t) over the first 8 weeks after
the puppy was born. Show the intervals where
W (t) is increasing and decreasing, the absolute
maximum and minimum values, and the inflection
point(s) of the graph.

The function W (t) is always increasing since
W ′(t) = r(t) > 0 for all t. The inflection point
is at the point where r(t) is maximum, which
is at t = 4. At this time the puppy’s weight is
W (4) = 5.

2 4 6 8

2

4

6

8

10

�

IP

t(wk)

W (kg)

3 (a)[2] Write the definite integral

∫ 2

−1

ex

x + 2
dx as a limit of the Riemann sum for the integral using right

endpoints.

Here

∆x =
3

n
and xi = −1 +

3i

n

Thus, the right endpoint Riemann sum for the integral is

∫ 2

−1

ex

x + 2
dx = lim

n→∞

n
∑

i=1

(

e−1+ 3i

n

−1 + 3i
n + 2

)

(

3

n

)

= lim
n→∞

n
∑

i=1

(

e−1+ 3i

n

1 + 3i
n

)

(

3

n

)
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(b)[2] Write a definite integral given by the limit: lim
n→∞

n
∑

i=1

tan

(

π

4
+

πi

12n

)

( π

12n

)

Here
∆x =

π

12n
and a = x0 =

π

4
, b = xn =

π

4
+

π

12
=

π

3

or equivalently

a = x0 = 0, b = xn =
π

12

So two possible definite integrals are

lim
n→∞

n
∑

i=1

tan

(

π

4
+

πi

12n

)

( π

12n

)

=

∫

π/4

π/3 tan x dx =

∫

0

π/12 tan
(π

4
+ x
)

dx
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4 The Q integral function is defined as

Q(x) =

∫ x

0

te− cos t dt

(a)[2] Find
d

dx
Q(x).

Using the Fundamental Theorem of Calculus, Part 1, we have

dQ

dx
=

d

dx

∫ x

0

te− cos t dt = xe− cos x

(b)[3] Verify that
d

dx
Q(x)ecos x = − sin xecos x Q(x) + x

Using the product rule together with the result from part (a) above we have

d

dx
Q(x)ecos x =

dQ

dx
ecos x + Qecos x (− sin x)

=
(

xe− cos x
)

ecos x − Qecos x sinx = x − Q(x)ecos x sin x

(c)[2] Verify that the function y = Q(x)ecos x + Cecos x, where C is an arbitrary constant, is the general
solution to the differential equation

dy

dx
+ (sinx) y = x

From the result in part (b) above we have

dy

dx
= x − Q(x)ecos x sin x − Cecos x sinx

so that

dy

dx
+ (sin x) y = x − Q(x)ecos x sin x − Cecos x sinx + sinx (Q(x)ecos x + Cecos x)

= x − Q(x)ecos x sin x − Cecos x sinx + Q(x)ecos x sinx + Cecos x sin x

= x
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5 The diagram shows the first quadrant region R
bounded by y = (x − 3)2, y = 0, and x = 1.

x

y

R

4

1 3

(a)[3] Use the disc method to find the volume of the solid
generated when the region R is rotated about the
x-axis.

Using the disc method for rotation about the x-
axis means we use vertical rectangles and integrate
in x. Then

∆V = πr2∆x = π
[

(x − 3)2
]

∆x = π(x − 3)4∆x

Then

V = π

∫ 3

1

(x − 3)4 dx =
π

5
(x − 3)5

∣

∣

∣

∣

∣

3

1

=
π

5

(

0 − (−2)5
)

=
32π

5

(b)[3] Use the cylindrical shell method to find the volume of the solid generated when the region R is
rotated about the y-axis.

Using the cylindrical shell method for rotation about the y-axis means we use vertical rectangles and
integrate in x. Then

∆V = 2πrh∆x = 2πx(x − 3)2∆x = 2πx
(

x2 − 6x + 9
)

∆x = 2π
(

x3 − 6x2 + 9x
)

∆x

Then

V = 2π

∫ 3

1

(

x3 − 6x2 + 9x
)

dx = 2π

(

x4

4
− 2x3 +

9x2

2

)

∣

∣

∣

∣

∣

3

1

= 2π

(

81

4
− 54 +

81

2
− 1

4
+ 2 − 9

2

)

= 8π

(c)[3] Set up the integral to use the washer method to find the volume of the solid generated when the
region R is rotated about the line x = 4. Do not simplify the integrand or evaluate the integral.

Using the washer method for rotation about a vertical line means we use horizontal rectangles and
integrate in y. First solve for x in terms of y in the equation for the curve.

y = (x − 3)2 ⇒ x = 3 ±√
y

Since the portion of the parabola we are using is the left half, we take the minus in this expression.
Thus, x = 3 −√

y. Then

∆V = π
(

r2
o − r2

i

)

∆y = π
[

(4 − 1)2 − (4 − (3 −√
y))

2
]

∆y

= π
[

9 − (1 +
√

y)
2
]

∆y

So the volume is

V = π

∫ 4

0

[

9 − (1 +
√

y)
2
]

dy

(d)[2] Set up the integral to use the cylindrical shell method to find the volume of the solid generated
when the region R is rotated about the line y = −2. Do not simplify the integrand or evaluate the
integral.

Using the cylindrical shell method for rotation about a horizontal axis means that we use horizontal
rectangles and integrate in y. We solved for x in terms of y in part (c) above. Then

∆V = 2πrh∆y = 2π(y + 2) (3 −√
y − 1) ∆y = 2π(y + 2) (2 −√

y) ∆y

So the volume is

V = 2π

∫ 4

0

(y + 2) (2 −√
y) dy
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6 Jordan has bought a new vase and she wants to com-
pute the volume of water that the vase holds. She
measures the height of the vase to be 12 cm and di-
ameter of the vase at 2 cm intervals. The diameter
measurements are shown in the diagram. Note that
the diameter at the base is 2 cm.

6.5 cm

7.1 cm

5.3 cm

3.3 cm

3.0 cm

5.0 cm

2.0 cm

y

x

(a)[2] Let d(y) be the diameter of the vase as a function
of the distance y from its bottom. Set up an in-
tegral for the volume of the vase in terms of the
function d(y).

The radius of each circular cross-section is r =
d(y)

2
, so that the volume is

V = π

∫ 12

0

[

d(y)

2

]2

dy =
π

4

∫ 12

0

[d(y)]
2

dy

(b)[4] Use Simpson’s rule to estimate value of the integral in part (a).

Here n = 6 and ∆y = 2. Then

V ≈ S6 =
π

4
· 2

3

(

[d(0)]
2

+ 4 [d(2)]
2

+ 2 [d(4)]
2

+ 4 [d(6)]
2

+ 2 [d(8)]
2

+ 4 [d(10)]
2

+ [d(12)]
2
)

=
π

6

(

22 + 4(6.5)2 + 2(7.1)2 + 4(5.3)2 + 2(3.3)2 + 4(3.0)2 + (5.0)2
)

=
π

6
(468.96) = 245.5 cm3

7[3] Use the Comparison Test to determine whether the integral below converges or diverges.

∫

∞

0

e−x

1 +
√

x
dx

Hint: Explain why 1 +
√

x ≥ 1 for all x ≥ 0.

For x ≥ 0, we have
√

x ≥ 0. Adding 1 to both sides gives 1 +
√

x ≥ 1. Thus,

1

1 +
√

x
≤ 1 ⇒ e−x

1 +
√

x
≤ e−x

Further,

∫

∞

0

e−x dx = lim
t→∞

∫ t

0

e−x dx = lim
t→∞

(

−e−x
)

∣

∣

∣

∣

∣

t

0

= lim
t→∞

(

1 − e−t
)

= 1

So the improper integral

∫

∞

0

e−x dx converges. Hence, since
e−x

1 +
√

x
≤ e−x, the Comparison Test shows

that

∫

∞

0

e−x

1 +
√

x
dx converges.
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8 (a)[3] Use an appropriate trigonometric substitution to evaluate the integral:

∫

x2

(x2 + 4)
3/2

dx

Let x = 2 tan θ. Then dx = 2 sec2 θdθ and
(

x2 + 4
)3/2

= 8 sec3 θ. Then
∫

x2

(x2 + 4)
3/2

dx =

∫

4 tan2 θ

8 sec3 θ

(

2 sec2 θdθ
)

=

∫

tan2 θ

sec θ
dθ =

∫ (

sec2 θ − 1

sec θ

)

dθ

=

∫

(sec θ − cos θ) dθ = ln |sec θ + tan θ| − sin θ + C

Now, tan θ =
x

3
so that sec θ =

√
x2 + 4

2
and sin θ =

x√
x2 + 4

. Thus,

∫

x2

(x2 + 4)
3/2

dx = ln

∣

∣

∣

∣

∣

√
x2 + 4 + x

2

∣

∣

∣

∣

∣

− x√
x2 + 4

+ C = ln
∣

∣

∣

√

x2 + 4 + x
∣

∣

∣
− x√

x2 + 4
+ C

(b)[2] Recall the hyperbolic functions sinhx =
ex − e−x

2
, cosh x =

ex + e−x

2
, and tanh x =

sinhx

cosh x
. Further,

recall that

cosh2 x − sinh2 x = 1,
d

dx
cosh x = sinh x,

d

dx
sinh x = cosh x

Use the definitions and identities above to show that

d

dx
tanh x =

1

cosh2 x

Using the definition of tanh x and the quotient rule

d

dx
tanh x =

d

dx

(

sinhx

cosh x

)

=
(cosh x) (coshx) − (sinh x) (sinhx)

(coshx)
2

=
cosh2 x − sinh2 x

cosh2 x
=

1

cosh2 x

(c)[4] Make the hyperbolic substitution x = 2 sinh t in the integral in part (a) above and evaluate the
resulting integral using the results in part (b) above. Express the result in terms of x using the fact
that

sinh−1 z = ln
∣

∣

∣
z +

√

z2 + 1
∣

∣

∣

Letting x = 2 sinh t gives dx = 2 cosh t dt. So that
∫

x2

(x2 + 4)
3/2

dx =

∫

4 sinh2 t

8 cosh3 t
(2 cosh t dt)

=

∫

sinh2 t

cosh2 t
dt =

∫

tanh2 t dt

Using the identities given in part (b) above we have

1 − tanh2 t =
1

cosh2 t
⇒ tanh2 t = 1 − 1

cosh2 t

Thus,
∫

x2

(x2 + 4)
3/2

dx =

∫ (

1 − 1

cosh2 t

)

dt

= t − tanh t + C

Now, since x = 2 sinh t, we have

sinh t =
x

2
⇒ t = sinh−1

(x

2

)

and

cosh2 t = 1 + sinh2 t = 1 +
x2

4
=

4 + x2

4
⇒ cosh t =

1

2

√

4 + x2

tanh t =
sinh t

cosh t
=

x/2√
x2 + 4/2

=
x√

4 + x2

So we have
∫

x2

(x2 + 4)
3/2

dx = sinh−1
(x

2

)

− x√
4 + x2

+ C

= ln

∣

∣

∣

∣

∣

x

2
+

√

x2

4
+ 1

∣

∣

∣

∣

∣

− x√
4 + x2

+ C

= ln
∣

∣

∣x +
√

x2 + 4
∣

∣

∣− x√
4 + x2

+ C
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9 (a)[3] Use the substitution z = x2 followed by integration by parts to evaluate the integral:

∫

x3e−x2

dx

Letting z = x2 gives dz = 2x dx ⇒ x dx = 1
2 dz. Then

∫

x3e−x2

dx =
1

2

∫

ze−z dz

Now integration by parts with

u = z dv = e−z dz

du = dz v = −e−z

Then
∫

x3e−x2

dx =
1

2

(

−ze−z +

∫

e−z dz

)

= −1

2
ze−z − 1

2
e−z + C

= −1

2
x2e−x2 − 1

2
e−x2

+ C

(b)[2] Use the result in part (a) above to evaluate the improper integral:

∫

∞

0

x3e−x2

dx

Recall that lim
x→∞

xne−x = 0 for any n.

∫

∞

0

x3e−x2

dx = lim
t→∞

∫ t

0

x3e−x2

dx

= lim
t→∞

(

−1

2
x2e−x2 − 1

2
e−x2

)

∣

∣

∣

∣

∣

t

0

= lim
t→∞

(

1

2
− 1

2
t2e−t2 − 1

2
e−t2

)

=
1

2

(c)[3] The average speed of molecules in an ideal gas is

v =
4√
π

(

M

2RT

)3/2 ∫ ∞

0

v3e−Mv2/(2RT ) dv

where M is the molecular weight of the gas, R is the gas constant, T is the gas temperature, and v

is molecular speed. Make the substitution x =

√

M

2RT
v in this integral and use the result in part

(b) above to show that

v =

√

8RT

πM

Letting x =

√

M

2RT
v gives v =

√

2RT

M
x ⇒ dv =

√

2RT

M
dx and

Mv2

2RT
= x2. Thus

v =
4√
π

(

M

2RT

)3/2 ∫ ∞

0

v3e−Mv2/(2RT ) dv

=
4√
π

(

M

2RT

)3/2(
2RT

M

)3/2
√

2RT

M

∫

∞

0

x3e−x2 dx

=
4√
π

√

2RT

M

(

1

2

)

=

√

4

π

2RT

M
=

√

8RT

πM
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10 A second order chemical reaction involves the the interaction of one molecule of a reactant P with one
molecule a second reactant Q to produce one molecule of the product X. This is written P +Q → X. Let
p and q be the initial concentrations of the reactants P and Q, respectively, and x(t) be the concentration
of the product X at time t. Then p − x(t) and q − x(t) are the concentrations of reactants P and Q at
time t. The rate at which the product X is produced is proportional to the product of the concentrations
of the two reactants P and Q.

(a)[2] Assuming that p = q, write a differential equation for x(t), the concentration of the product X at
time t. Let k be the constant of proportionality.

Since p = q we can write the differential equation as

dx

dt
= k(p − x)(q − x) = k(p − x)2

(b)[3] By separating variables find the general solution to the differential equation in part (a).

Separating variables gives
dx

(p − x)2
= k dt

Integrating gives
∫

dx

(p − x)2
=

∫

k dt = kt + C

Integrating the left hand side gives
∫

dx

(p − x)2
=

1

p − x

Thus,
1

p − x
= kt + C ⇒ p − x =

1

kt + C
⇒ x(t) = p − 1

kt + C

(c)[2] Find the particular solution to the differential equation in part (a) subject to the initial condition
x(0) = 0. Determine the limiting value of x(t) as t → ∞.

Applying the initial condition to the first form on the left above gives

1

q
= C

Then the particular solution is

x(t) = p − 1

kt +
1

p

= p − p

pkt + 1
=

p2kt + p − p

pkt + 1
= p

pkt

pkt + 1

The limiting value is given by

lim
t→∞

p
pkt

pkt + 1
= lim

t→∞

p
pk

pk +
1

t

= p

So the limiting value of the x(t) is p. Of course, eventually every molecule of P is converted to the
product.

(d)[2] The particular solution in part (c) above contains the product pk. Letting the time t be measured
in hours, find the value of the product pk given that it takes one hour to reach 50% of the limiting
value found on part (c) above. Then determine how long it will take to 90% of the limiting value
found in part (c) above.

We are given that x(1) = 1
2p. This gives

1

2
p = pp

pk

pk + 1
⇒ 1

2
= p

pk

pk + 1
=

1

2
pk +

1

2
= pk ⇒ pk = 1

So,

x(t) = p
t

t + 1

Now find the time when x(t) = 0.9p. This gives

0.9p = p
t

t + 1
⇒ 0.9 =

t

t + 1
⇒ 0.9t + 0.9 = t ⇒ 0.1t = 0.9 ⇒ t = 9

So it takes 9 hours to reach 90% of the limiting value.
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11 Consider the differential equation
dy

dx
=

x + y

x − y

(a)[2] Two slope fields are shown below. Pick the one that is the correct slope field for the differential
equation above. Explain your choice.

2−2

2

−2

(A)

2−2

2

−2

(B)

Note that along the line y = −x the slope given by the differential equation is zero. This is the case
on (B) but not on (A).

(b)[2] On the slope field that you chose in part (a) draw the solutions for the given differential equation
that satisfy the initial conditions: y(0) = 1 and y(1) = 0.

(c)[3] By completing the table below, use Euler’s method to estimate y(1.3) if y(x) satisfies the differential
equation above and y(1) = 0. Use a step size of 0.1.

x y
dy

dx

dy

dx
∆x

1.0 0.00000 1.0000 0.10000

1.1 0.10000 1.2000 0.12000

1.2 0.22000 1.4490 0.14490

1.3 0.36490

(d)[1] Is the estimated solution in part (c) above an overestimate or an underestimate? Explain your
answer.

The solution curve in part (b) through the point (1,0) is concave up, so the Euler’s method estimate
is an underestimate.
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12 For each of the following infinite series

i) give the first four terms of the series

ii) determine whether the series converges or diverges

iii) if the series is geometric, give the sum of the series

(a)[3]

∞
∑

n=1

n2

3n

∞
∑

n=1

n2

3n
=

1

3
+

4

9
+

9

27
+

16

81
+

25

243
+ · · ·

Here

an =
n2

3n
an+1 =

(n + 1)2

3n+1

So that

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

3n

n2
· (n + 1)2

3n+1

∣

∣

∣

∣

= lim
n→∞

1

3

(

n + 1

n

)3

=
1

3
< 1

Thus, the series converges, but it is not geometric.

(b)[3]

∞
∑

n=1

n! · 2n

(2n + 1)!
∞
∑

n=1

n! · 2n

(2n + 1)!
=

1

3
+

1

15
+

1

105
+

1

945
+ · · ·

Here

an =
n! · 2n

(2n + 1)!
an+1 =

(n + 1)! · 2n+1

(2n + 3)!

So that

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(2n + 1)!

n! · 2n
· (n + 1)! · 2n+1

(2n + 3)!

∣

∣

∣

∣

= lim
n→∞

(

2(n + 1)

(2n + 3)(2n + 2)

)

= lim
n→∞

1

2n + 3

= 0 < 1

Thus, the series converges, but it is not geometric.

(c)[3]

∞
∑

n=0

(−1)n4n

5n−1

∞
∑

n=0

(−1)n4n

5n−1
= 5 − 4 +

16

5
− 64

25
+

This is a geometric series with r = −4

5
and a = 5. Since |r| < 1 the series converges and the value is

∞
∑

n=0

(−1)n4n

5n−1
= 5







1

1 +
4

5






=

25

9
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13 Let g(x) = ln

(

x

2 − x

)

= ln x − ln(2 − x).

(a)[3] The Taylor series for a function f centered at x = a is

f(x) = f(a) + f ′(a)(x − a) +
1

2!
f ′′(a)(x − a)2 + · · · + 1

n!
f (n)(x − a)n + · · ·

Find the first four non-zero terms in the Taylor series centered at x = 1 for the g defined above.

First compute the derivatives

f(x) = ln x − ln(2 − x) ⇒ f(1) = 0

f ′(x) =
1

x
+

1

2 − x
⇒ f ′(1) = 2

f ′′(x) = − 1

x2
+

1

(2 − x)2
⇒ f ′′(1) = 0

f ′′′(x) =
2

x2
+

2

(2 − x)3
⇒ f ′′′(1) = 4 = 2 · 2

f (4)(x) = −2 · 3
x4

+
2 · 3

(2 − x)4
⇒ f (4)(1) = 0

f (5)(x) =
2 · 3 · 4

x5
+

2 · 3 · 4
(2 − x)5

⇒ f (5)(1) = 2 · 2 · 2 · 3 · 4

Thus,

g(x) = ln

(

x

2 − x

)

= 2(x − 1) +
1

3!
(2 · 2)(x − 1)3 +

1

5!
(2 · 2 · 2 · 3 · 4)(x − 1)5 + · · ·

(b)[3] Given that the series in part (a) above is

∞
∑

n=0

2

2n + 1
(x − 1)2n+1

determine the radius of convergence of the series and give an open interval in which the series
converges.

Here

an =
2

2n + 1
(x − 1)2n+1 an+1 =

2

2n + 3
(x − 1)2n+3

So that

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

2n + 1

2(x − 1)2n+1
· 2

2n + 3
(x − 1)2n+3

∣

∣

∣

∣

= lim
n→∞

2n + 1

2n + 3
|x − 2|2 = |x − 2|2

The series converges if |x − 2|2 < 1 ⇒ |x − 2| < 1. Thus, the radius of convergence is R = 1 and the
open interval of convergence is (0, 2).

(c)[2] Find the value of x for which
x

2 − x
= 2

and use your answer together with the series in part (a) above to estimate the value of ln 2.

Solving the equation above gives

x

2 − x
= 2 ⇒ x = 4 − 2x ⇒ 3x = 4 ⇒ x =

4

3

This value of x is in the interval of convergence found in part (b) above. Thus, noting that
4

3
−1 =

1

3

ln 2 = f

(

4

3

)

≈ 2

(

1

3

)

+
2

3

(

1

3

)3

+
2

5

(

1

3

)5

+ · · ·

=
2

3
+

2

81
+

2

5 · 35
+

2

7 · 37
+ · · ·

= 0.69313(exact value is ln 2 = 0.69315)

=
2

3

∞
∑

n=0

1

(2n + 1)32n
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A Short Table of Integrals

1.

∫

f(g(x))g′(x) dx =

∫

f(u) du where u = g(x) 2.

∫

u dv = vu −
∫

v du

3.

∫

un du =
1

n + 1
un+1 + C 4.

∫

du

u
= ln |u| + C

5.

∫

eu du = eu + C 6.

∫

au du =
1

ln a
au + C

7.

∫

sinu du = − cos u + C 8.

∫

cos u du = sin u + C

9.

∫

sec2 u du = tan u + C 10.

∫

sec u tan u du = secu + C

11.

∫

tan u du = ln |secu| + C 12.

∫

sec u du = ln |secu + tan u| + C

13.

∫

du√
a2 − u2

= arcsin
(u

a

)

+ C 14.

∫

du

a2 + u2
=

(

1

a

)

arctan
(u

a

)

+ C

15.

∫

sinn u du = − 1

n
sinn−1 u cos u +

n − 1

n

∫

sinn−2 u du 16.

∫

cosn u du =
1

n
cosn−1 u sin u +

n − 1

n

∫

cosn−2 u du

17.

∫

tann u du =
1

n − 1
tann−1 u −

∫

tann−2 u du 18.

∫

secn u du =
1

n − 1
tan u secn−2 u +

n − 2

n − 1

∫

secn−2 u du

19.

∫

eau sin bu du =
eau

a2 + b2
(a sin bu − b cos bu) + C 20.

∫

eau cos bu du =
eau

a2 + b2
(a cos bu + b sin bu) + C

21.

∫

lnu du = u ln u − u + C

Some Identities

1. cos2 x + sin2 x = 1 2. 1 + tan2 x = sec2 x

3. cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x 4. sin 2x = 2 sin x cos x

5. cos2 x =
1 + cos 2x

2
6. sin2 x =

1 − cos 2x

2

Partial Fractions

1.
P (x)

(ax + b)k
=

A1

ax + b
+

A2

(ax + b)2
+ · · · Ak

(ax + b)k
where degree of P is less than k

2.
P (x)

(px2 + qx + r)
k

=
A1x + B1

px2 + qx + r
+

A2x + B2

(px2 + qx + r)
2 + · · · Akx + Bk

(px2 + qx + r)
k

where degree of P is less than 2k

Numerical Integration

Midpoint Rule Mn = ∆x [f (x1) + f (x2) + · · · + f (xn)] where xi =
xi−1 + xi

2

Error in Midpoint Rule |EM | ≤ K

24

(b − a)3

n2
where K is an upper bound on |f ′′(x)| on [a, b]

Trapezoid Rule Tn =
∆x

2
[f (x0) + 2f (x1) + · · · + 2f (xn−1) + f (xn)]

Error in Trapezoid Rule |ET | ≤
K

12

(b − a)3

n2
where K is an upper bound on |f ′′(x)| on [a, b]

Simpson’s Rule Sn =
∆x

3
[f (x0) + 4f (x1) + 2f (x3) + · · · + 2f (xn−2) + 4f (xn−1) + f (xn)]

Error in Simpson’s Rule |ES | ≤
K

180

(b − a)5

n4
where K is an upper bound on

∣

∣f (4)(x)
∣

∣ on [a, b]


